Are Data Scientists Evolving With the Rise of Artificial Intelligence?

As developments in machine learning (ML) are expected to progress at a phenomenal pace, it is set to become one of the most powerful tools for businesses to enhance productivity and drive innovation. While ML, one of the most popular artificial intelligence (AI) applications, holds a lot of promise for businesses, is the role of data scientist today already evolving in order to keep up with the change?

What Is Next in AI

Continued advances in AI will see autonomous systems perceive, learn, decide, and act on their own, but to ensure the effectiveness of these systems, the machine will need to be able to explain their decisions and actions to humans. This is so called explainable AI.

“In the future, many AI systems are going to interact with people, especially those who will take responsibilities, hence the reason why AI needs to be explainable, meaning that the behavior of the system needs to be easily expected and interpreted by people,” said Min Sun, Chief AI Scientist at Appier.

Sun also pointed out that in the future, AI is going to be less supervised, which means that it will require less human inputs, and be more creative.

Data science was previously concerned with time-consuming ML tasks, such as data wrangling and feature engineering, which could take up 80 percent of data scientist’s time, but such tasks can be automated sooner or later, according to Deloitte’s Technology, Media and Telecommunications Predictions 2018 report.

Such advances in AI will give data scientists more time to execute more complex tasks. However, it brings up a problem: a majority of data scientists doesn’t possess the required advanced machine learning skills, such as deep learning (DL), a subfield of ML.

The Impact of Machine Learning on Businesses

Previously, companies might have spent a lot of time doing guesswork based on consumer data gathered online and offline, which is usually fragmented and siloed. With an AI-based approach, brands are able to unify data across different channels for a holistic view and analysis of the audience and their conversion journey.

Machine learning and deep learning allow a computer to take in huge sets of data and not only predict the outcome, but also understand what the desired output should be. It can be integrated into many aspects of digital marketing, such as predicting consumer behavior and campaign outcomes, marketing automation, sophisticated buyer segmentation and sales forecasting.

With these technologies, businesses have a more efficient and cost-effective way to build trustworthy AI systems to be used by professionals and/or to be naturally interacted with human users, according to Hsuan-Tien Lin, Appier’s Chief Data Scientist.

So, it’s no surprise to see that businesses are increasingly catching up on the adoption of AI technology. According to the International Data Corporation (IDC), AI continues to be a key spending area for companies in the near future, with worldwide spending on cognitive and AI systems increasing 54.2 percent in 2018 to US$19.1 billion. That number could go up to US$52.2 billion in 2021, IDC predicted.

Bridging the Machine Learning Skills Gap

As more businesses look to adopt AI techniques like machine learning and deep learning, data scientists are urged to upskill, in order to keep up with the current trends. Rudina Seseri, Founder and Managing Partner at Glasswing Ventures, wrote in Forbes, “Data scientists – at least the successful ones – will evolve from their current roles to becoming machine learning experts or some other new category of expertise, yet to be given a name”.

Leading tech companies such as Google and Microsoft have already been offering relevant courses aiming to help bridge the talent gap. For example, Google not only made its ‘Machine Learning Crash Course’ available to the general public earlier this year as part of the company’s ‘Learn With Google AI’ initiative, it has also launched a machine learning specialization on Coursera, an online learning platform.

Andrew Ng, one of the world’s best-known AI experts, also launched a set of courses on deep learning through Coursera in 2017, hoping to help more people get up to speed on key developments in AI.

While technical skills will be foundation of the role of data scientists, it’s crucial for them to master human-centric skills too. Data scientists will need to develop a better understanding of the overarching business strategy and business challenges in real-world scenarios, in order to create solutions that can solve real problems.

Businesses are looking for a total solution, Sun pointed out. For instance, self-driving car manufacturers need a system consisting of perception, communication, decision-making and control. In the old days, each module was designed separately, but this has been transitioning to more jointly design since the fatal self-driving Uber crash, where the perception system identified the pedestrian, but the decision-making module failed to react.

The ability for scientists to design a complete system consisting of multiple ML modules will become more and more important,” he said. “In the future, data scientists will need to have the modeling and analysis skills at the system-level to provide business people with the right total solution to the market.”

Is Artificial Intelligence Breathing New Life Into Email Marketing?

As digital channels such as social media continue to be a vital tool for customer engagement and product promotion, it’s easy to overlook “old school” tools like email. However, recent improvements in email marketing – underpinned by artificial intelligence (AI) – are turning email marketing into a viable marketing tool.

Compared to the possible instant response on social channels, email marketing tends to be less effective due to its limitations, including difficulty in finding and retaining subscribers, and low open and click-through rates.

Conventional wisdom would have you change certain things about your email content to improve its performance, such as offering more discounts, crafting a better subject line, or sending messages with a different frequency. But these suggestions are based on the notion that, as a human, you can guess why readers are or aren’t connecting with your content. While true to a certain extent, this assumption requires a high degree of trial and error to arrive at the desired response from recipients.  

Now, help from AI makes it possible for businesses to discover new lookalike customers, better understand and segment existing customers, predict topics of interest, and anticipate customer behaviors. These actions can help you solve some of the most vexing challenges with email marketing.

Increase Open Rates With AI-Powered Segmentation

There is a reason why your readers aren’t connecting to your content. By taking an AI-based approach, you can see a highly accurate analysis of the problem – as well as your audience’s needs – putting you considerably further along than if you only employ guesswork.

While only 21 percent of marketers in Asia Pacific delivered personalized email beyond just name in 2017, 76 percent of them indicated that they were keen to do better personalization in email marketing, according to a Econsultancy report.

The report also pointed out that using a data point in addition to the recipient’s name is twice as likely to trigger them to open the email. Imagining if AI could write a short novel that almost won a literary award, it can also analyze all the user data including the content consumed by users across screens, and then extract the most frequently used keywords to identify topics that your audience is most interested in, and create predictive segmentations.

Once you gain such actionable insights, you can then develop content or create offers that correspond closely with their preferences and needs. As AI is capable of identifying as many keywords as possible, you will have multiple touchpoints to engage with your audience.

You can even predict who will respond to your new campaign based on their responses to past campaigns, and customize mailing features that make it easier for them to do so.

For instance, a major online and print publisher in Taiwan used to send the same emails to all readers, resulting in low open and click-through rates. Content and headlines weren’t relevant or sufficiently attractive to trigger recipients’ interest.

By adopting an AI-based approach, the publisher used deep learning to link reader profiles with their online behaviors to establish segmented profiles based on key attributes, such as age and interests. This process allowed the publisher to tailor mailing lists to the right group with appropriate marketing content. As a result, its open rates increased by 42 percent, and click-through rates increased by as much as 107 percent.

Grow Your User Base With Lookalike Audiences

The right AI models can also analyze data gathered from users’ online activity to find those who “look like” your current customers, helping you develop targeted ads and other outreach efforts. This process starts with the breakdown of demographic data about your current customers with as much granularity as you choose. It can include data from your website, campaigns, apps, customer relationship management software, application programming interface integration, and more.

An AI-enabled platform then maps that information with additional sources to find close potential customer matches. Using this valuable data set, email outreach becomes less of a guessing game and more of a precise targeting tool.

Retain Subscribers with AI Prediction

Based on behavior patterns, the AI-enabled platform can help you identify subscribers who are likely to leave your service. Certain actions indicate their readiness to move on, but you can prevent this migration if you give them reasons to stay. Once you have identified this subset of your subscribers, you can plan and implement your re-engagement strategies, such as:

  • Creating emails targeted solely to this group of “potential unsubscribers”, and segmenting further into interest groups.
  • Offering surprises, deals or rewards specific to those groups.
  • Using formatting and links to make it easy for readers to take action.

AI is the most promising tool that is driving personalization in email marketing like never before. The AI-based approach makes it possible to identify the behaviors and interests that should trigger customer engagement in email marketing, and determine how the content delivered should be customized to produce the desired outcome. The benefits mentioned above are testament to how AI can make this old marketing method thrive again.

 

AI 101: Deep Learning

Imagine that you are a marketer looking to run a targeted marketing campaign. What if you had a tool that could easily segment your market on the basis of factors like economic status, purchasing preferences, online shopping behavior, etc. so that you could customize your approach and messaging to each segment for maximum impact and conversion?

These are the kind of insights that deep learning (DL)* can offer.   

DL refers to a family of advanced neural networks that mimic the way the brain processes information and extract goal-oriented models from scattered and abstract data. What differentiates it from traditional machine learning is the use of multiple layers of neurons to digest the information.  

A DL program trains a computer to perform human-like tasks, such as speech recognition or predicting consumer behaviors. It is fed large amounts of data and taught what the desired output should be. The more data it’s fed, the better performance.

The program then applies calculations to achieve that output, modifying calculations and repeating the cycle until the desired outcome is achieved. The ‘deep’, hence refers to the number of processing layers that the data must pass through to achieve the outcome, and how the learning algorithms are stacked in a complex, hierarchical manner. The more levels or layers there are, the ‘deeper’ the learning.

DL can analyze huge volumes of data to detect patterns and predict trends and outcomes. This is especially interesting to marketers, finding application in predicting consumer behavior and campaign outcomes, marketing automation, sophisticated buyer segmentation and sales forecasting, to name a few use cases.

*Deep learning is not magic, but it is great at finding patterns.